Clifford–Finsler Algebroids and Nonholonomic Einstein–Dirac Structures

نویسنده

  • Sergiu I. Vacaru
چکیده

We propose a new framework for constructing geometric and physical models on nonholonomic manifolds provided both with Clifford – Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off–diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange and/or Riemann–Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off– diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clifford Algebroids and Nonholonomic Einstein–Dirac Structures

We propose a new framework for constructing geometric and physical models on spacetimes provided with Lie algebroid symmetry, i.e. manifolds provided with additional anchor and generalized Lie algebra commutator structures. The approach is related to the geometry of moving nonholonomic frames with associated nonlinear connections. A strict application of such geometric methods to spinor fields ...

متن کامل

Nonholonomic Algebroids, Finsler Geometry, and Lagrange–Hamilton Spaces

We elaborate an unified geometric approach to classical mechanics, Riemann–Finsler spaces and gravity theories on Lie algebroids provided with nonlinear connection (N–connection) structure. There are investigated the conditions when the fundamental geometric objects like the anchor, metric and linear connection, almost sympletic and related almost complex structures may be canonically defined b...

متن کامل

Clifford Algebroids and Nonholonomic Spinor Deformations of Taub–NUT Spacetimes

In this paper we examine a new class of five dimensional (5D) exact solutions in extra dimension gravity possessing Lie algebroid symmetry. The constructions provide a motivation for the theory of Clifford nonholonomic algebroids elaborated in Ref. [1]. Such Einstein–Dirac spacetimes are parametrized by generic off–diagonal metrics and nonholonomic frames (vielbeins) with associated nonlinear c...

متن کامل

Nonholonomic Clifford Structures and Noncommutative Riemann–Finsler Geometry

We survey the geometry of Lagrange and Finsler spaces and discuss the issues related to the definition of curvature of nonholonomic manifolds enabled with nonlinear connection structure. It is proved that any commutative Riemannian geometry (in general, any Riemann– Cartan space) defined by a generic off–diagonal metric structure (with an additional affine connection possessing nontrivial torsi...

متن کامل

Einstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics

We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008